3D Reconstruction Using Charge

the "wire-cell" group

Outline

- Introduction of basic ideas to do tomographic 3D reconstruction using charge information
- Demo of some events
- Xin will describe some algorithms in more details if there is time left

TPC vs. Tomography

- As electrons drift toward APA, they represent tomographic cross sections at each time slice
- Combining the reconstructed images on the time slices results in the full 3D object

Fig.1:Basic principle of tomography: superposition free tomographic cross sections S1 and S2 compared with the projected image P

Challenge

- The challenge in large single-phase LArTPC reconstruction is the wire readout (compared with pad pixel readout):
 - Wire readout is necessary to reduce the cost
 - However the measured degree of freedom is reduced from N² (pixels) to "3N" (wires) → information lost

- Ambiguity is difficult to be totally removed
 - Faked hits when there are many hits at fixed time "t"

Traditional Solution

- Use the time information first
 - Track should be continuous in time
- Do tracking in 2-D (time vs. wire number)

- Combine three planes into a 3-D tracking
- Difficult for Shower, when there are many tracks
- 3D reconstruction is crucial for direction reconstruction, energy reconstruction as well as PID

Our Approach

- Using charge to reduce degeneracy
 - Same charge in a "cell" is measured 3 times by wires on different planes
 - Find out all potential hits including faked hits (H_i)
 - We can then form a matrix

- This matrix is known
- It represents the knowledge
- When there is a hit in 3D, we can predict definitely how much electrons are seen by each wire

Example

There will be less faked hits with 3-plane readout With charge in each point solved, fake hits would naturally have small (close to zero) charge

Algorithms

- Construction of wire-cell association
- Concept of merged wire and merged cell
- χ² minimization and matrix Inversion
 - When not solvable, perform hypothesis testing, use information from near-by time layers to constrain number of unknowns
 - Exclusive Iterative approach
 - Markov-chain approach
- Merged Cell reduction
- Wrapped-wire configuration

Clustering, tracking, and PID ...

Blue: to do list

Xin will discuss in more details